Equivalent fractions (1)

Shade the bar models to represent the fractions.

b) Shade $\frac{2}{4}$ of the bar model.

What do you notice?

$$\frac{1}{2} = \frac{\boxed{}}{8}$$

	<u> </u>

$$\frac{1}{4} = \frac{2}{\boxed{}}$$

) [

$$\frac{3}{4} = \frac{6}{\boxed{}}$$

Shade the bar models to represent the equivalent fractions.

$$\frac{1}{3} = \frac{2}{6}$$

$$\frac{2}{3} = \frac{4}{6}$$

c)			Ι	 		
		,				

$$\frac{1}{3} = \frac{3}{9}$$

$$\frac{2}{3} = \frac{6}{9}$$

4	Match each bar model to its equivale	bar model to its equivalent fraction.					
	$\frac{1}{2}$						
	$\frac{1}{3}$						
	$\frac{1}{4}$						

Shade the bar models to complete the equivalent fractions.

$$\frac{1}{2} = \frac{\boxed{}}{12}$$

$$\frac{1}{3} = \frac{\boxed{}}{12}$$

$$\frac{1}{6} = \frac{1}{12}$$

Which is the odd one out? _____

Why do you think this?

Tick the bar models that can be used to show a fraction that is equivalent to $\frac{3}{4}$

Shade the bar models to support your answers.

How many parts has each model been split-into?

